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Review	of	Calculations	on	Point	Defect	Properties	in	-Pu

W.G.	Wolfer	and	P.	G.	Allen

Lawrence	Livermore	National	Laboratory,	Livermore,	CA

Abstract

The	results	of	theoretical	predictions	of	properties	for	vacancies	and	self-interstitial	
atoms	(SIA)	in	-Pu	are	presented	and	reviewed.	Three	methods	have	been	used	for	
these	predictions,	namely	the	modified	embedded	atom	method	(MEAM),	density	
functional theory	(DFT)	with	and	without	spin	polarization,	and	continuum	
mechanics (CM)	models	adapted	to	plutonium.	The	properties	considered	are	
formation	and	migration	energies,	and	relaxation	volumes	of	vacancies	and	SIA.	
Predicted	values	vary	considerably.	Nevertheless,	all	three	methods	predict	that	the	
activation	energy	for	self-diffusion	by	vacancies	is	of	similar	magnitude	as	the	SIA	
formation	energy.	Furthermore,	the	absolute	magnitudes	of	relaxation	volumes	for	
vacancies	and	SIA	are	also	similar,	indicating	that	there	exist	no	large	bias	for
radiation-induced	void	swelling.



Introduction

In	each	radioactive	decay	of	plutonium,	about	two	to	three	thousand	displacement	
events	occur.	The	point	defects	thereby	produced,	namely	vacancies	and	self-
interstitial	atoms	(SIA),	diffuse	through	the	crystal	lattice	and	aggregate	to	form	
larger	defects. Among	these	larger	defects	are	numerous	helium	bubbles	in	aged	-
Pu	[1],	but	other	defects	have	so	far	not	been	found	via	TEM	investigations.	This	is	in	
contrast	to	the	defect	evolution	in	steels	irradiated	in	nuclear	reactors.	Here,	in	
addition	to	voids	and	bubbles,	prismatic	dislocation	loops	are	present,	and	the	
network	dislocation	density	also	changes	with	radiation	exposure.	This	
microstructural	evolution	depends	strongly	on	the	fundamental	properties	of	
vacancies	and	self-interstitial	atoms	(SIA),	and	extensive	research	efforts	have	been	
devoted	to	obtain	reliable	values	for	these	properties	for	a	few	metals,	both	with	
experiments	and	theory.	In	particular	for	SIA,	experimental	approaches	are	limited,	
and	theoretical	investigations	have	been	the	dominant	avenue	to	obtain	results.	
These	investigations	employ	empirical	interatomic	potentials	[2],	semi-empirical	
potentials	provided	by	the	embedded	atom	method	(EAM)	or	the	modified	
embedded	atom	method	(MEAM),	and	lately	also	ab-initio	methods	based	on	density	
functional	theory	(DFT).	Finally,	Wolfer	[3]	has	refined	continuum	mechanics	
models	to	obtain	certain	properties	of	vacancies	and	SIAs	in	both	fcc	and	bcc	metals.
All	these	theoretical	approaches	have	been	applied	recently	to	obtain	also	these	
properties	for	point	defects	in	-Pu	and	in	gallium-stabilized	-Pu.	The	results	from	
these	efforts	are	summarized	and	compared	in	this	report,	and	several	conclusions	
are	reached	to	guide	future	work.

Point	Defect	Properties	based	on	MEAM.

The	development	of	MEAM	potentials	of	plutonium	[4],	of	gallium	[5],	as	well	as	of	
cross	potentials	for	Pu-Ga,	Pu-He,	and	Ga-He	interactions	[6],	has	enabled	atomistic	
simulations	to	determine	properties	of	vacancies,	of	self-interstitials,	and	of	
interstitial	and	substitutional	helium	in	-Pu.	Table	1		summarizes	results	so	far	
obtained.



TABLE	1.	Defect	formation	and	migration	energies	(in	eV)	obtained	with	MEAM	
																			in	-Pu	and	in	Ga-stabilized	-Pu

*	for	<100>	split	configuration
I-He	is	a	He	atom	in	an	interstitial	position,	and	S-He	in	a	substitutional	position

A	few	observations	are	noteworthy.	First,	the	vacancy	formation	energy,	 ,	is	

predicted	to	be	significantly	smaller	than	the	activation	energy	for	migration,	 ,	

contrary	to	most	other	fcc	metals.	Second,	the	formation	energy	of	a	split	<100>	self-
interstitial	is	remarkably	low;	in	aluminum	with	a	melt	temperature	similar	to	
plutonium,	this	energy	is	estimated	to	be	1.82	eV.	Third,	to	place	a	helium	atom	into	
an	interstitial	site	requires	a	large	energy,	and	as	a	result,	it	is	predicted	to	
spontaneously	produce	a	Frenkel	pair	and	occupy	instead	the	vacancy;	it	converts	to	
a	substitutional	helium	because	the	formation	energy	of	the	Pu	self-interstitial	is	so	
low.

Point	Defect	Properties	based	on	DFT

Calculations	with	spin-polarized	density-functional	theory	(SP	DFT)	have	also	been	
attempted,	and	the	results	are	summarized	in	Table	2.	The	predicted	vacancy	
formation	energies	are	excessively	large,	about	as	large	as	experimental	values	for	
the	self-diffusion	energy.	In	contrast,	the	formation	energy	for	<100>-split	SIA	is	

EV
f

EV
m

Reference 7 6	 8 9	 10 11 10 13

Material -Pu Pu	
5at.%Ga

-Pu -Pu -Pu -Pu -Pu Pu	5at.%Ga

Vac.	formation,	EV
f 0.48 0.44 0.9 0.46 0.58+0.12

Vac.	migration,	EV
m 1.0 1.06	 0.8 1.29+0.30

SIA	formation*,	ESIA
f 0.49 0.52 1.16+0.23

SIA	migration,	ESIA
m 0.056 0.084 0.079 0.4+0.3

SIA+Vac.	formation 1.6
I-He	formation 3.6	

unrelaxed
2.3 3.15+0.51

I-He	migration 0.4+0.2
S-He	formation 1.5
S-He	migration 0.9+0.3
S-He+SIA	formation 1.69+0.70



remarkably	low.	This implies	that	thermally	activated	production	of	SIAs	is as	likely	
as	that	of	vacancies	at	microstructural	defects	such	as	dislocations,	grain	
boundaries,	and	helium	bubbles.	
Another	intriguing	prediction	is	the	large	relaxation	of	the	atoms	that	surround	a	
vacancy.	While	in	normal	fcc	metals,	the	vacancy	relaxation	volume	is	around	-0.2	,	
 being	the	atomic	volume,	the	much	larger	collapse	of	atoms	nearly	eliminates	the	
vacancy	in	-Pu.

Table 2.	Defect	formation	and	migration	energies	(in	eV)	obtained	with	DFT	
																			for	-Pu	and	for	Ga-stabilized	-Pu.

*Split	orientation	as	indicated	

Point	Defect	Properties	based	on	Continuum	Mechanics

Vacancy Migration
The atomistic process of vacancy migration consists of one atom next to the vacant site 
jumping into this site and leaving behind another vacant site. The jump is thermally 
activated, and transition state theory predicts a diffusion coefficient for vacancy 
migration in cubic crystals of the form

Reference 14 15	 16	 17 18 19

Material -Pu -Pu -Pu	
1.5at.%Ga

 -Pu -Pu

Method* SP	DFT SP	DFT
DM

SP	DFT DFT	no	SP
Pseudo-pot.

SP	DFT
Plane-wave

SP	DFT
all	electron

Vac.	formation,	EV
f 1.5
unrelaxed

1.08	
relaxed

1.2 1.35 1.75

Vac.	migration,	EV
m 0.85 0.56

SIA	formation*,	

ESIA
f

0.8		<100>		
1.8		<111>	

0.73		<100>	

Vac.	relaxation,	

VV
rel /

-0.62 -0.95 -0.7

SIA	relaxation,	

VSIA
rel /

0.40	<100>
0.65	<111>

1.4



                    (1)

Here, LV is an average frequency for lattice vibrations, a is the lattice parameter, is 

the vacancy migration entropy, and is the enthalpy for vacancy migration. It is in fact 
the energy of an activation barrier that the jumping atom must overcome, and when it 
temporarily occupies a position at the height of this barrier, the atomic configuration is 
referred to as the saddle point of the vacancy. It will be considered in greater detail 
momentarily. 
Values obtained for from experimental measurements for fcc metals increase with 

the melting point. 

Fig.	1.	Jump	of	one	nearest-neighbor	atom	of	a	
vacancy	through	a	cannel	formed	by	four	atoms.

The saddle-point configuration of the vacancy involves not just the displacement of the 
jumping atom, but also the coordinated motion of other atoms that are nearest neighbors 
of the vacancy and of the jumping atom. These nearest neighbor atoms lie at the corners 
of a rectangular plane as shown in Figure 1, and as the jumping atom crosses this plane, 
they are displaced such that it opens the channel. This coordinated motion can be viewed 
as a particular strain fluctuations and described in terms of phonon excitations. In this 
manner, Flynn [20] has derived the following formula for the energy of vacancy 
migration in cubic crystals.

                      (2)

Here, a is the lattice parameter and is an empirical parameter that characterizes the 
shape of the activation barrier and can be determined by comparing experimental vacancy 
migration energies with values predicted by equation (2). Ehrhart et. al [21] recommend 
that  = 0.022 for fcc metals.

DV LV a2 exp(SV
m /k) exp(HV

m /kT)  DV
0 exp(HV

m /kT)

SV
m

HV
m

HV
m

EV
m 

15C11C44 (C11 C12 ) a3

2 C11(C11 C12 )C44(5C11 3C12 ) 
Joule



In the derivation of Flynn, only the four nearest neighbor atoms are supposed to move, 
while all other atoms are assumed to remain in their normal lattice positions. On the other 
hand, Kornblit et al.[22] treat the expansion of the diffusion channel as a quasi-static 
elastic deformation of the entire surrounding material. The extent of the expansion is such 
that the opened channel is equal to the cross-section of the jumping atom, and the linear 
anisotropic elasticity calculation is carried out by a variational method. A vacancy 
migration energy for fcc metals of

                  (3)

is obtained, and the parameters pi are linear functions of the three elastic constants.

                     p0  =  5.29833 C11 - 4.76499 C12 + 9.35238 C44

                     p1  =  0.86667 C11 - 0.33330 C12 + 1.91111 C44

                     p2 =  1.41903 C11 - 0.88570 C12 + 1.64444 C44

The self-diffusion coefficient determines the transport of atoms through the crystal under 
conditions near the thermodynamic equilibrium, and it is defined as

(4)

where the activation energy for self-diffusion is

. (5)

The most accurate measurements of diffusion coefficients is done with a radioactive 
tracer isotope of the metal under investigation, and in this case one obtains values for the 
tracer self-diffusion coefficient

that involves the correlation factor f. For pure elemental metals of cubic structure, f is a 
constant and can be determined exactly by computation. For fcc crystals, f = 0.78145.
To determine then the pre-exponential factor for self-diffusion

(6)

requires values for the entropy and for the attempt frequency . Based on 

theoretical estimates, Seeger and Mehrer [23] recommend a value of 2.5 k for the former. 
The atomic vibration of nearest neighbor atoms to the vacancy is treated within a 

EV
m  0.0010776 a3 p0

p0 p1  p2
2

p0
2  2

9 p0 p2 
1
9 p2

2
eV

DSD DV
m CV

eq  LV a2 exp((SV
f  SV

m ) /k)exp(QSD /kT)  DSD
0 exp(QSD /kT)

QSD  EV
f  EV

m

DSD
T  f DSD

DSD
0  LV a2 exp((SV

f  SV
m ) /k)

SV
f  SV

m  LV



sinusoidal potential energy profile that has a maximum height of . For small-

amplitude vibrations the attempt frequency is then given by

(7)

where M is the atomic mass. Table 3 provides the vacancy migration properties for the 
two Ga-stabilized -Pu alloys for which single crystal elastic constants are available [29, 
30].

     Table 3. Vacancy migration energy and pre-factor for tracer self-diffusion

At.% Ga    Flynn   Kornblit   Flynn DSD
0 , m2/s    Kornblit DSD

0 , m2/s

0.02               0.315               0.659                     2.01e-6                  2.85e-6
0.034             0.313               0.685                     1.99e-6                  2.95e-6

Vacancy Formation Energy and Vacancy Relaxation Volume

A vacancy in a metal may be viewed as the smallest spherical void. Formation energies 
of nanovoids have been derived by Wolfer [3] using the concept of a surface energy that 
depends on the surface stress and on the electron density spill-out into the void. Taking 
the limit of a void containing just one vacancy, its formation energy is given by

(8)

and its relaxation volume by

(9)

In these two equations, 

(10)

=	0.477,	=	0.65,	a is	the	lattice	parameter,	G is	the	shear	modulus, and	0 and	g	
are	the	surface	energy	and	the	surface	stress	for	a	planar	surface,	respectively.	The	
surface	stretch	modulus	can	be	approximated	by	[24]

(11)

EV
m

LV 
1

a

EV
m

M

EV
m, eV EV

m, eV

Ev
f  4 ( a)20 1 (1a / TF )exp(a / TF ) 

 4 ( ag)2 /  2aG(1 /)3 

Vv
rel / 3Eg / 2aG(1 /)3





 
3

16 











1/3

  4 aG / (E 1)



where	E is	the	Eshelby	factor.	Its	value	can	be	determined	with	the	elastic	constants	
of	the	single	crystals	[25]	,	and	to	maintain	consistency,	the	value	of	the	isotropic	
shear	modulus	G is	also	evaluated	with	the	same	elastic	constants	according	to	the	
procedure	by	Gairola	and	Kröner	[26].	Finally,	we	need	a	value	for	the	Thomas-
Fermi	screening	length	TF that	is	related	to	the	conduction	electron	density.
Marrouzi	et	al.	[27]	have	established that	this	electron	density	correlates	well	with	
the	bulk	modulus	B of	metals	as	outlined	in	Appendix	B.
The	surface	energy	of	plutonium	has	only	been	measured	for	the	liquid	state	and	
found	to	be	L =0.55	J/m2 .	With	an	empirical	relationship	by	Murr	[28],	
the	surface	energy	for	the	solid	can	be	estimated	according	to

(12)

where	Tm is	the	melting	temperature.	At	ambient	temperature,	 .

There	remains	then	only	one	unknown	parameter,	namely	the	surface	stress	g.	To	
obtain	values	for	it,	we	use	the	average	of	measured	self-diffusion	energies,	namely	
QSD =	1.45	eV,	and	subtract	from	it	the	vacancy	migration	energy	obtained	with	the	
models	by	Flynn	and	by	Kornblit.	This	value	of	the	vacancy	formation	energy	is	
inserted	into	equation	(8)	and	solved	for	g.	With	it	we	compute	with	eq.	(9)	the	
vacancy	relaxation	volume.
Table	4 lists	the	values	obtained	for	the	two	Ga-stabilized	materials	for	which	single	
crystal	elastic	constants	are	available	[29,	30].

																						Table	4.	Properties	associated	with	vacancies	in	-Pu

At. %	Ga 2.0 3.4

G (GPa) 16.072 16.117

shelby	factorE 1.84 1.78

a (nm) 0.46235 0.4611

TF (nm) 0.05606 0.05583

 (N/m) 16.88 16.12

Flynn	Vac.	Formation	(eV) 1.11 1.14

Kornblit	Vac.	Form.	(eV) 0.64 0.69

Flynn g (N/m) 2.08 2.10

Kornblit	g (N/m) 2.52 2.67

Flynn	 -0.66 -0.60

Kornblit		 -0.80 -0.76

SIA	Formation,	Migration, and	Relaxation	Volume

In	the	continuum	mechanics	treatment	of	a	SIA,	it	is	viewed	as	an	elastic	inclusion.	A	
region	within	a	homogeneous	solid	is	assumed	to	undergo	a	transformation	that	

0 1.2 L 0.00045(Tm T )

0 1.0 J / m2

Vv
rel /

Vv
rel /



changes	its	density	and	its	elastic	properties	from	those	of	the	surrounding	
unchanged	material,	called	here	the	matrix.	If	the	region	before	the	transformation	
had	the	volume	V0,	its	volume	after	the	transformation becomes	greater	by	V,	and	
the	restraining	matrix	now	compresses	this	region,	and	the	matrix	is	stretched	in	
the	circumferential	directions.	If	the	inclusion	is	a	sphere,	and	it	and	the	matrix	are	
elastically	isotropic,	the	total	strain	energy	stored	in	the	solid	is	given	by

(13)

with	 (14)

Here,	 and	B are	the	Poisson’s	ratio	and	bulk	modulus	of	the	matrix,	respectively,	
while	BI is	the	bulk	modulus	of	the	inclusion.

When	an	extra	atom	is	inserted	into	a	perfect	crystal	region	of	fcc	structure,	and	the	
atoms	are	viewed	as	rigid	spheres,	the	crystal	structure	is	expanded	by	1.102	
where	 is	the	atomic	volume.	However,	the	non-linear	elastic	deformation	
of	the	matrix	increases	this	volume	expansion	significantly.	For	example,	in	Ni,	the	
measured	volume	expansion	is	1.8	,	indicating	that	the	inclusion	representing	the	
SIA	is	under	high	compression	and	has	become	stiffer.
In	the	case	of	-Pu,	it	is	known	that	the	high	pressure	of	about	330	MPa	generated	
under	the	indenter	of	a	microhardness	tester	induces	a	transformation	to	-Pu	[32].	
This	suggests	that	the	-Pu	atoms	associated	with	the	compressed	region	of	a	SIA	
are	converted	to	-Pu	atoms.
So	let	us	assume	that the	inclusion	region	before	the	insertion	of	an	additional	atom	

had	the	volume	of		V0 =	n ,	and	it	converted	after	the	insertion	to	a	volume	of	

(n+1), then

(15)

Note	that	the	ratio	of	the	atomic	volumes	is	/ =	0.8, i.e.	less	than	one.	With	eq.	

(15)	inserted	into	eq.(13),	the	strain	energy	becomes	a	function	of	n,	U(n).	But	this	is	
not	yet	the	energy	of	the	SIA.	Two	other	contributions	must	be	included.	The	
enthalpy	of	transformation	of	-Pu	to	-Pu	has	been	measured by	Adler	[33],	and	for	
n+1 atoms	transformed,	the	energy	released	or	expended	is

, (16)

Associated	with	the	-Pu	inclusion	is	also	an	interfacial	free	energy	of

U 
2GV0

3(1)

V

V0











2

 
2(12 )

3(1 )
and   BI / B

V
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 1
1
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







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



1

H (n)  (n1)(4.075 69.04 xGa ) kJ / mol



(17)

Unfortunately,	the	specific	interface	energy	IF between	-Pu	and	-Pu	phases	is	not	
known.	Typically,	interface	energies	between	different	phases	of	the	same	metal	are	
on	the	order	of	one	tenth	of	the	surface	energy	0 for	coherent	interfaces	to	one	half	
for	incoherent	interfaces	[28].	The	number	(n+1)	of	plutonium	atoms	associated	
with	a	SIA	can	now	be	obtained	by	finding the	minimum	of	the	total	energy,	the	sum	
of	eqs.	(13),	(16),	and	(17):

E(n) U(n)H (n) F(n) (18)

If	we	denote	this	number	with	n*,	then	the	SIA	formation	energy	is	E(n*).
We	show	in	Fig.	2		the results	obtained	for	the	case	of	-Pu	stabilized	with	3.3	at.%	
Ga.	The	number	of	-Pu	atoms	converted	to	-Pu	is	shown	on	the	left,	and	it	varies	
from	about	2	to	4	as	the	interface	energy	decreases	from	0.5	J/m2 to	0.1	J/m2,	while	
the	formation	energy	of	a	SIA,	shown	on	the	right,	drops	from	2.2	eV	down	to	0.5	eV.

Fig. 2.	Number	of	-Pu	atoms	and	SIA	formation	energy	versus	interface	energy
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With	the	number	(n*+1)	of	converted	atoms	determined,	eq.(15)	provides	then	
values	of	the	relaxation	volume	of	SIA;	they	are	displayed	in	Fig.	3 .
We	note	that	an	inclusion	formed	by	five	-Pu	atoms,	one	atom	inserted	into	four	

matrix	atom	of	initial	volume	4 ,	produces	no	misfit,	hence	zero	relaxation	volume	
and	zero	strain	energy.	But	even the	conversion	of	fewer	atom	results	in	relaxation	

volumes	below	0.5 ,	of	about	the	same	magnitude	as	the	absolute	value	of	the	

vacancy	relaxation	volume.	This	implies	that	there	exists	no	significant	preference	
for	SIA	absorption	at	dislocations	in	-Pu.
The	SIA	formation	energy	predicted	is	also	much	lower	than	in	other	fcc	metals,	and	
it	is	similar	in	magnitude	to	the	activation	energy	for	self-diffusion.		

The	change	in	the	atomic	volume	from	 to	 has	been	explained	by	more	5f	

electrons	becoming	itinerant.	The	formation	of	a	SIA	in	the	present	model	is	then	
associated	with	electronic	transitions	that	render	it	a	dynamic	defect,	and	the	
effective	number	of	-Pu	atom	in	it	need	not	be	a	fixed	integer.	Migration	of	this	
defect	may	then	be	viewed	as	follows.	A	-Pu	atom	adjacent	to	the	SIA	releases	in	
response	to	a	large	thermal	fluctuation	a	5f	electron	and	in	the	process	becomes	a	
smaller	-Pu	atom.	However,	the	released	5f	electron	is	captured	by	one	of	the	-Pu	
atoms	in	the	SIA,	and	it	converts	to	a	-Pu	atom.	The	number	of	-Pu	atoms	remains	
the	same	as	before,	but	the	SIA	has	moved	its	center	of	mass.	During	this	transition	
the	SIA	energy	reached	temporarily	the	value	of	E(n*+1).

Fig. 3.	SIA	relaxation	volume	as	a	function of	the	interface	energy
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

Hence,	the	activation	energy	for	SIA	migration	can	be	obtained	from

ESIA
m (n*)  E(n*1)E(n*) (19)

This	migration	energy	is	shown	in	Fig. 4 as	a	function	of	(n*+1) together	with	the	
formation	energy.	It	is	seen	that	the	migration	energy	is	about	one	tenth	of	the	
formation	energy	for	any	possible	value	of	the	interfacial	energy.	Migration	energies	
of	this	magnitude	have	also	been	found	for	regular	fcc	metals.

Fig.	4.	SIA	migration	and	formation	energies	as	a	function	of	the	number	of	atoms	
contained	in	it.	The	top	scale	shows	associated	interface	energy.
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Conclusions

For	a	better	overview	we	list	in	Table	5 the	ranges	of	values	predicted	by	the	three	
different	methods	for	the	properties	of	vacancies	and	SIA	in	-Pu.	Lowest	and	
highest	values	are	selected	for	a	particular	property	obtained	with	a	particular	
method	to	define	the	range.	When	values	for	the	self-diffusion	energy	or	for	the	sum	
of	SIA	formation	and	migration	are	given,	both	parts	had	to	appear	together	in	the	
same	publication.	However,	self-diffusion	energies	listed	under	CM	are	in	fact	
published	experimental	values,	and	their	average	of	1.45	eV	was	used	to	obtain	
vacancy	formation	energies	with	the	CM	method.

Table	5.	Ranges	for	defect	properties	predicted	with	different	methods.	Energies	are	
in	units	of	eV/atom.	Numbers	in	brackets	are	experimental	values.

				MEAM 						DFT 							CM

EV
f 0.44	~	0.58 1.08	~	1.75 0.64 ~	1.14

EV
m 0.80	~	1.29 0.56	~	0.85 0.31	~	0.69

EV
f EV

m QSD 1.24	~	1.87 1.76	~	2.35 												(1.03	~	1.74)

ESIA
f 0.49	~	1.16 0.73	~	0.80 0.49	~	2.2

ESIA
m 0.056	~	0.4 0.033	~ 0.23

ESIA
f ESIA

m 0.57	~	1.56 0.525	~	2.43

VV
rel / 			 0.62	~	0.95 0.60	~	0.80

VSIA
rel / 0.40	~	1.40 0.10	~	0.44

Vacancy	formation	energies	predicted	with	DFT	seem	to	be	too	large	by	a	factor	of	
two,	although	vacancy	migration	energies	appear	to	be	more	reasonable.	Both	
MEAM	and	CM	predict	a	wide	range	of	vacancy	migration	energies,	but	the	highest	
value	from	MAEM	is	too	close	to	the	average	experimental	value	for	self-diffusion.	
Vacancy	migration	energies	predicted	with	the	models	by	Flynn	and	by	Kornblit	for	
normal	fcc	metals	give	similar	values	that	are	in	good	agreements	with	experimental	
values.	It	is	then	surprising	that	when	applied	to	-Pu,	the	Flynn	model	predicts	a	
very	low	value	of	0.31	eV,	while	the	Kornblit	model	generates	a	value	of	0.69	eV,	
about	half	the	self-diffusion	energy;	this	partitioning	is	in	fact	the	rule	for	normal	fcc	
metals.
Perhaps	the	most	surprising	result	is	the	low	values	predicted	for	the	SIA	formation	
energy	with	all	three	methods.	When	migration	energies	are	also	predicted,	the	sum

ESIA
f ESIA

m has a range from 0.57 to 1.56 eV for MEAM, and from 0.53 to 2.4 eV for CM 

calculations, and these ranges overlap with those for self-diffusion energies. It raises the 
possibility that both vacancies and SIA can be created by thermal activation in -Pu. To 



put this in perspective, it is instructive to compare -Pu with Al. Resistivity recovery 

experiments on aluminum gave a value of 3.3 + 0.6 eV for ESIA
f ESIA

m [35], much larger 

than its self-diffusion energy of 1.28 eV.

Relaxation	volumes	predicted	for	vacancies	and	SIA	in	-Pu	are	also	quite	different	
than	measured	values	in	normal	fcc	metals.	In	these	metals,	the	vacancy	relaxation	
volume	is	between	-0.2	 and	-0.3	,	and	the	SIA	relaxation	volume	is	between	1.5	
 and	1.8	.	In	contrast,	vacancies	in	-Pu	are	predicted	to	have	large	negative	
values	from	-0.6	 to	-0.95	,	while	SIA	possess	small	relaxation	volumes,	of	the	
same	order	of	magnitude	or	even	smaller	than	the	absolute	values	of	the	relaxation	
volumes	for	vacancies.	This	implies	that	vacancies	may	be	attracted	to	dislocations	
more	than	SIA,	and	the	fundamental	mechanism	for	radiation-induced	void	swelling	
is	absent	in	-Pu.	
DFT	calculations	with	spin	polarization	have	been	very	successful	to	explain	and	
predict	the	different	allotropes	of	plutonium.	It	is	then	disappointing	that predicted
properties	for	vacancies	and	for	SIA	in	-Pu	are	still	questionable.	As	a	next	step, it	
may	be	worthwhile to	first	explore what	DFT	with	spin	polarization	will	predict	for	
a	crystal	containing	both	phases,	-Pu	and	-Pu.

Appendix A. Evaluation of the Eshelby Factor

The evaluation of strain fields for defects in anisotropic materials makes use of the elastic 
Green’s function. While this Green’s function can be represented in analytic form in 
reciprocal space, in real space analytical forms exist only for isotopic and hexagonal 
crystals. The strategy adopted for anisotropic materials has been to define an appropriate 
isotropic approximation and to treat the deviations from isotropy by either perturbation 
theory or by variational methods. Both of these approaches have been studied and utilized 
by Leibfried and Breuer [25]. In particular, we use their results to establish a analytical 
correlation. For it we make use of the anisotropy constant

CA C11 C12 2C44 , (A1)

the bulk modulus

B  (C11 2C12 ) / 3 , (A2)

and the two Voigt constants

C11  C11 2CA /5 (A3)

C44  C44  CA /5 (A4)

Leibfried and Breuer [25] have computed the Eshelby factor for many metals and found 
that it is determined by two constants, namely by the ratios of 



C11 / B  and CA /C 44. We are able to fit their numerical results to the following 
expression

E 
C11

B
1 0.002458

CA

C 44











4
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








(1)

(A5)

Using the elastic constants of Ledbetter and Moment [30] and those of Wong et al. [29] 
determined from phonon dispersion measurements, we obtain the Eshelby factors listed 
in the last column of Table A1.  

Table A1. Elastic Constants for -Pu in units GPa  and  Eshelby Factors

Ref. C11       C12           C44   B     CA    CA /C 44      C11 / B         E

 36.28 				26.73							33.59							29.91					-57.6				-2.610										1.983									1.78
		29	 35.3 				23.9									30.6										27.27				-51.1				-2.507											1.997									1.84

Appendix	B.	Correlation	between	Bulk	Modulus	and	Free	Electron	Density

The	connection	between	the	free	electron	density	or	Wigner-Seitz	parameter	and	
the	bulk	modulus	is	shown	in	Fig.	B1,	a	reproduction	of	a	similar	figure	in	Ref.	[27].	
If	ne denotes	the	number	of	free	electrons	per	atom,	then

rs / aB 
3

4 ne











1/3

(B1)

where	aB is	the	Bohr	radius.	The	data	can	be	fitted	to the	power	law

B(GPa)  3120.3(rS / aB )4.607  28157 ne
1.536 (B2)

For	the	bulk	modulus	of	-Pu,	28 GPa,	one	obtains	a	free	electron	density	of	0.011	
per	atom,	or	1.04 of	the	94	electrons	in	an	atom.	This agrees	with	electronic	
structure	calculations	that	show	that	one	of	the	5f	electrons	is	itinerant	in	-Pu.	For	
-Pu	with	a	bulk	modulus	of	55	GPa,	1.62	of	the	5f	electrons	are	de-localized.
The	Thomas-Fermi	screening	length	is	defined	as [34]

TF  aB


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





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1/3
rS

aB

(B3)



and	it	can	therefore	also	be	related	to	the	bulk	modulus	using	eq.	(B2).	 We	obtain

TF (nm) 0.081 B(GPa) 
 0.1085

(B4)

and	TF =	0.05646	nm	for	-Pu.

Fig.	B1.	Correlation	between	bulk	modulus	and	Wigner-Seitz	parameter	for	metals	
[27].
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